3.1249 \(\int \frac{(A+C \cos ^2(c+d x)) \sqrt{\sec (c+d x)}}{(a+a \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=174 \[ \frac{(19 A+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{(9 A-7 C) \sin (c+d x)}{16 a d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}}-\frac{(A+C) \sin (c+d x)}{4 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{5/2}} \]

[Out]

((19*A + 3*C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c
+ d*x]]*Sqrt[Sec[c + d*x]])/(16*Sqrt[2]*a^(5/2)*d) - ((A + C)*Sin[c + d*x])/(4*d*(a + a*Cos[c + d*x])^(5/2)*Sq
rt[Sec[c + d*x]]) - ((9*A - 7*C)*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.523008, antiderivative size = 174, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.162, Rules used = {4221, 3042, 2978, 12, 2782, 205} \[ \frac{(19 A+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{(9 A-7 C) \sin (c+d x)}{16 a d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}}-\frac{(A+C) \sin (c+d x)}{4 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

((19*A + 3*C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c
+ d*x]]*Sqrt[Sec[c + d*x]])/(16*Sqrt[2]*a^(5/2)*d) - ((A + C)*Sin[c + d*x])/(4*d*(a + a*Cos[c + d*x])^(5/2)*Sq
rt[Sec[c + d*x]]) - ((9*A - 7*C)*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 3042

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x
])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (A+C \cos ^2(c+d x)\right ) \sqrt{\sec (c+d x)}}{(a+a \cos (c+d x))^{5/2}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{A+C \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{5/2}} \, dx\\ &=-\frac{(A+C) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{1}{2} a (7 A-C)-a (A-3 C) \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac{(A+C) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}-\frac{(9 A-7 C) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{a^2 (19 A+3 C)}{4 \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=-\frac{(A+C) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}-\frac{(9 A-7 C) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left ((19 A+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=-\frac{(A+C) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}-\frac{(9 A-7 C) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{\left ((19 A+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{16 a d}\\ &=\frac{(19 A+3 C) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{16 \sqrt{2} a^{5/2} d}-\frac{(A+C) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}-\frac{(9 A-7 C) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 1.73779, size = 216, normalized size = 1.24 \[ \frac{i \cos ^5\left (\frac{1}{2} (c+d x)\right ) \left ((19 A+3 C) e^{-\frac{1}{2} i (c+d x)} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{1-e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )-\frac{1}{4} i \left (\sin \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{3}{2} (c+d x)\right )\right ) \sec ^4\left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)} ((9 A-7 C) \cos (c+d x)+13 A-3 C)\right )}{4 d (a (\cos (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

((I/4)*Cos[(c + d*x)/2]^5*(((19*A + 3*C)*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c
+ d*x))]*ArcTanh[(1 - E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])])/E^((I/2)*(c + d*x)) - (I/4)*(
13*A - 3*C + (9*A - 7*C)*Cos[c + d*x])*Sec[(c + d*x)/2]^4*Sqrt[Sec[c + d*x]]*(Sin[(c + d*x)/2] - Sin[(3*(c + d
*x))/2])))/(d*(a*(1 + Cos[c + d*x]))^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.177, size = 376, normalized size = 2.2 \begin{align*} -{\frac{\sqrt{2}\cos \left ( dx+c \right ) \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2}}{32\,d{a}^{3} \left ( \sin \left ( dx+c \right ) \right ) ^{5}}\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( -9\,A\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}+7\,C \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+19\,A\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) \cos \left ( dx+c \right ) -4\,A\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\cos \left ( dx+c \right ) +3\,C\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) \cos \left ( dx+c \right ) -4\,C\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\cos \left ( dx+c \right ) +19\,A\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) +13\,A\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+3\,C\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) -3\,C\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \right ){\frac{1}{\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(5/2),x)

[Out]

-1/32/d*2^(1/2)/a^3*(1/cos(d*x+c))^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*(-1+cos(d*x+c))^2*(-9*A*2^(1/2)*(
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2+7*C*cos(d*x+c)^2*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+19*A*
arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)*cos(d*x+c)-4*A*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x
+c)+3*C*arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)*cos(d*x+c)-4*C*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
*cos(d*x+c)+19*A*arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)+13*A*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+
3*C*arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)-3*C*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))/sin(d*x+c)^5/
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 2.5243, size = 554, normalized size = 3.18 \begin{align*} -\frac{\sqrt{2}{\left ({\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right ) + 19 \, A + 3 \, C\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) + \frac{2 \,{\left ({\left (9 \, A - 7 \, C\right )} \cos \left (d x + c\right )^{2} +{\left (13 \, A - 3 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{32 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/32*(sqrt(2)*((19*A + 3*C)*cos(d*x + c)^3 + 3*(19*A + 3*C)*cos(d*x + c)^2 + 3*(19*A + 3*C)*cos(d*x + c) + 19
*A + 3*C)*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) + 2*((9*A
 - 7*C)*cos(d*x + c)^2 + (13*A - 3*C)*cos(d*x + c))*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(cos(d*x + c)))/
(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^(5/2), x)